Correlated Fractal Percolation and the Palis Conjecture
نویسندگان
چکیده
Let F1 and F2 be independent copies of one-dimensional correlated fractal percolation, with almost sure Hausdorff dimensions dimH(F1) and dimH(F2). Consider the following question: does dimH(F1)+ dimH(F2) > 1 imply that their algebraic difference F1 − F2 will contain an interval? The well known Palis conjecture states that ‘generically’ this should be true. Recent work by Kuijvenhoven and the first author (Dekking and Kuijvenhoven in J. Eur. Math. Soc., to appear) on random Cantor sets cannot answer this question as their condition on the joint survival distributions of the generating process is not satisfied by correlated fractal percolation. We develop a new condition which permits us to solve the problem, and we prove that the condition of Dekking and Kuijvenhoven (J. Eur. Math. Soc., to appear) implies our condition. Independently of this we give a solution to the critical case, yielding that a strong version of the Palis conjecture holds for fractal percolation and correlated fractal percolation: the algebraic difference contains an interval almost surely if and only if the sum of the Hausdorff dimensions of the random Cantor sets exceeds one.
منابع مشابه
A model for modified electrode with carbon nanotube composites using percolation theory in fractal space
We introduce a model for prediction the behavior of electrodes which modified withcarbon nanotubes in a polymer medium. These kinds of polymer composites aredeveloped in recent years, and experimental data for its percolation threshold isavailable. We construct a model based on percolation theory and fractal dimensionsand using experimental percolation threshold for calculating the moments of c...
متن کاملPercolation on the Non-p.c.f. Sierpiński Gasket and Hexacarpet
We investigate bond percolation on the non-p.c.f. Sierpiński gasket and the hexacarpet. With the use of the diamond fractal, we are able to bound the critical probability of percolation on the non-p.c.f. gasket from above by √ 5−1 2 , or approximately 0.618. We then show how the two fractals are related via the barycentric subdivisions of a triangle: the two spaces exhibit duality properties al...
متن کاملUniversal crossing probabilities and incipient spanning clusters in directed percolation
Shape-dependent universal crossing probabilities are studied, via Monte Carlo simulations, for bond and site directed percolation on the square lattice in the diagonal direction, at the percolation threshold. In a dynamical interpretation, the crossing probability is the probability that, on a system with size L, an epidemic spreading without immunization remains active at time t. Since the sys...
متن کاملساختار خوشههای پرکولاسیون تهاجمی در دو بعد
We have performed extensive numerical simulations to estimate the fractal dimension of the mass and also the anisotropy in the shape of sample spanning cluster (SSC) in 2-D site invasion percolation processes with and without trapping. In agreement with the most recent works, we have observed that these two different processes belong to two different universality classes. Furthermore, we have...
متن کاملDynamic stability of high-dimensional dynamical systems
The dynamical stability conjectures of Palis and Smale, and Pugh and Shub are investigated from the stand-point of numerical observation, and a new stability conjecture is proposed. As the dimension of a dissipative dynamical system is increased, the number of positive Lyapunov exponents increases monotonically, the number of observable periodic windows decreases, and there is a subset of param...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010